Spectrotemporal Processing in Spectral Tuning Modules of Cat Primary Auditory Cortex
نویسندگان
چکیده
Spectral integration properties show topographical order in cat primary auditory cortex (AI). Along the iso-frequency domain, regions with predominantly narrowly tuned (NT) neurons are segregated from regions with more broadly tuned (BT) neurons, forming distinct processing modules. Despite their prominent spatial segregation, spectrotemporal processing has not been compared for these regions. We identified these NT and BT regions with broad-band ripple stimuli and characterized processing differences between them using both spectrotemporal receptive fields (STRFs) and nonlinear stimulus/firing rate transformations. The durations of STRF excitatory and inhibitory subfields were shorter and the best temporal modulation frequencies were higher for BT neurons than for NT neurons. For NT neurons, the bandwidth of excitatory and inhibitory subfields was matched, whereas for BT neurons it was not. Phase locking and feature selectivity were higher for NT neurons. Properties of the nonlinearities showed only slight differences across the bandwidth modules. These results indicate fundamental differences in spectrotemporal preferences--and thus distinct physiological functions--for neurons in BT and NT spectral integration modules. However, some global processing aspects, such as spectrotemporal interactions and nonlinear input/output behavior, appear to be similar for both neuronal subgroups. The findings suggest that spectral integration modules in AI differ in what specific stimulus aspects are processed, but they are similar in the manner in which stimulus information is processed.
منابع مشابه
Increasing spectrotemporal sound density reveals an octave-based organization in cat primary auditory cortex.
Auditory neurons are likely adapted to process complex stimuli, such as vocalizations, which contain spectrotemporal modulations. However, basic properties of auditory neurons are often derived from tone pips presented in isolation, which lack spectrotemporal modulations. In this context, it is unclear how to deduce the functional role of auditory neurons from their tone pip-derived tuning prop...
متن کاملSpectrotemporal processing differences between auditory cortical fast-spiking and regular-spiking neurons.
Excitatory pyramidal neurons and inhibitory interneurons constitute the main elements of cortical circuitry and have distinctive morphologic and electrophysiological properties. Here, we differentiate them by analyzing the time course of their action potentials (APs) and characterizing their receptive field properties in auditory cortex. Pyramidal neurons have longer APs and discharge as regula...
متن کاملSpatial interaction between spectral integration and frequency gradient in primary auditory cortex.
Primary sensory cortical areas are characterized by orderly and largely independent representations of several receptive field properties. This is expressed in multiple, spatially overlaying parameter distributions, such as orientation preference, spatial frequency, and ocular dominance maps in the primary visual cortex. In the auditory cortex, two main and presumably independent representation...
متن کاملOrganized representation of spectrotemporal features in songbird auditory forebrain.
Much of our understanding of the functional organization of auditory cortex is based on relatively simple stimuli, and the cortical representation of complex sounds remains poorly understood. With their rich vocal communication and learning behaviors, songbirds can offer insights into the neural processing of complex acoustic signals analogous to human speech. In the primary forebrain auditory ...
متن کاملDynamics of Spectro - Temporal Tuning in Primary Auditory Cortex of the Ferret
In this paper, we explore spectro-temporal tuning in primary auditory cortex following a sudden change in spectro-temporal content. We previously characterized the steady-state spectrotemporal tuning properties of cortical cells with respect to broadband sounds by presenting sounds with a spectro-temporal envelope of constant spectral density and angular frequency for several seconds. However, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012